Анна Ильющенкова
Сайт НЕВРОНЬЮС, который Вы собираетесь посетить, содержит материалы исключительно для работников здравоохранения. Нажимая на кнопку «Войти» Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.
Губанова М. В.
Клинические и лабораторно-инструментальные признаки дисплазии соединительной ткани у больных с диссекцией внутренних сонных и позвоночных артерий.
Автореферат кандидатской диссертации. Москва.
Сайт НЕВРОНЬЮС, который Вы собираетесь посетить, содержит материалы исключительно для работников здравоохранения. Нажимая на кнопку «Войти» Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.
Абиева А. Р.
Клинико-неврологические особенности, состояние церебральной гемодинамики и тромбоцитарного гемостаза у пациентов, перенесших каротидную эндатерэктомию, и неоперированных больных.
Автореферат кандидатской диссертации. Москва.
Сайт НЕВРОНЬЮС, который Вы собираетесь посетить, содержит материалы исключительно для работников здравоохранения. Нажимая на кнопку «Войти» Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.
Тазартукова А. Д.
Анализ ночного сна у пациентов с мозговым инсультом.
Автореферат кандидатской диссертации. Москва.
Неврологические аспекты диагностики и реабилитации пациентов с головокружением и неустойчивостью
Сайт НЕВРОНЬЮС, который Вы собираетесь посетить, содержит материалы исключительно для работников здравоохранения. Нажимая на кнопку «Войти» Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.
Ашнокова И. А.
Неврологические аспекты диагностики и реабилитации пациентов с головокружением и неустойчивостью.
Автореферат кандидатской диссертации. Санкт-Петербург.
Сайт НЕВРОНЬЮС, который Вы собираетесь посетить, содержит материалы исключительно для работников здравоохранения. Нажимая на кнопку «Войти» Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.
Алексеевич Г. В.
Восстановление тонкой моторики при синдроме центрального гемипареза с использованием ci-терапии и принципа биологической обратной связи.
Автореферат кандидатской диссертации. Красноярск.
Совершенствование модели медицинского обслуживания детей с эпилепсией и судорожными синдромами
Сайт НЕВРОНЬЮС, который Вы собираетесь посетить, содержит материалы исключительно для работников здравоохранения. Нажимая на кнопку «Войти» Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.
Маруева Н. А.
Совершенствование модели медицинского обслуживания детей с эпилепсией и судорожными синдромами (на примере Краевого противоэпилептического центра).
Автореферат докторской диссертации. Красноярск.
Головная боль у мужчин молодого и среднего возраста (клинико-нейропсихологическое исследование).
Сайт НЕВРОНЬЮС, который Вы собираетесь посетить, содержит материалы исключительно для работников здравоохранения. Нажимая на кнопку «Войти» Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.
Далелова И. Л.
Головная боль у мужчин молодого и среднего возраста (клинико-нейропсихологическое исследование).
Автореферат кандидатской диссертации. Москва.
Сайт НЕВРОНЬЮС, который Вы собираетесь посетить, содержит материалы исключительно для работников здравоохранения. Нажимая на кнопку «Войти» Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.
Ильина Е. С.
Биологическая обратная связь в терапии головной боли у пациентов с различными физиологическими параметрами.
Автореферат кандидатской диссертации. Москва.
Сайт НЕВРОНЬЮС, который Вы собираетесь посетить, содержит материалы исключительно для работников здравоохранения. Нажимая на кнопку «Войти» Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.
Исследователям из США удалось соединить мозг трёх людей в одну сеть. Интерфейс мозг-мозг назвали BrainNet, это неинвазивный способ передачи информации от двух добровольцев третьему с помощью электроэнцефалограммы и транскраниальной магнитной стимуляции. Система уже успела успешно показать себя в испытании – небольшой игре, где от участника требовалось правильно расставить фигуры на экране, при этом получая указания от двух других людей через интерфейс. Выигрышный результат составил более 80 процентов. Подробнее о разработке можно прочитать на сайте препринтов arXiv.
Вопросом объединения мозга с мозгом задаются достаточно много учёных. К примеру, три года назад сотрудники Университета Дьюка во главе с Михаилом Лебедевым соединили мозг трёх макак при помощи электродов, которые вживили в серое вещество. Так как применение инвазивных методов на людях невозможно из этических соображений, создание человеческого интерфейса мозг-мозг затруднено. Однако, остаётся возможность применения неинвазивных способов мониторинга и стимуляции – электроэнцефалографии (ЭЭГ) и транскраниальной магнитной стимуляции (ТМС).
Команда авторов во главе с Линсяном Цзяном (Linxing Jiang) из Университета Вашингтона решила использовать эти методы и попробовать объединить сознание трёх людей между собой. Они пригласили 15 добровольцев, которых разделили на несколько троек. Так, в каждой команде двое выполняли роли инструкторов, а третий – инструктируемого. Для считывание информации от мозга первых двух участников учёные применили ЭЭГ, а для передачи активности к третьему – ТМС.
Задание заключалось в прохождении игры, напоминающей тетрис: наверху экрана появлялась фигура, которую нужно было перевернуть так, чтобы заполнить пробелы в ряду снизу. Участники в роли инструкторов видели финальный ряд и знали, нужно ли предпринимать действия и манипулировать фигурой, при этом третий участник ряда не видел, но мог принимать решения об изменении положения.
Чтобы это сделать, третьему человеку в команде нужно было наблюдать за лампочкой, которая располагалась с разных сторон – слева и справа в зависимости от инструкции. Она мигала с разной частотой, что формировало сигнал, с помощью ТМС переходящий в зрительную кору получателя. Такая стимуляция способствовала появлению фосфена – зрительного ощущения, при котором появляется небольшое светящееся пятно. При наблюдении фосфена третий доброволец принимал решение переворачивать фигуру, а если этого не случалось, то оставлял её в неизменном положении. В результате BrainNet помог правильно угадать нужное положение фигуры в 81,3 процентах случаев – это высокий результат, что говорит о низкой вероятности случайного попадания.
Интересно, что учёным удалось научить получателя инструкции определять верность информации. Одному из инструкторов они дали задание намеренно давать неправильные данные. В итоге инструктируемый смог отличить правильные посылы от неправильных.
В ранних экспериментах интерфейсы мозг-мозг уже разрабатывались, однако, количество участников обычно не превышало двух. В своей новой работе исследователям удалось создать первый подобный интерфейс с использованием мозга трёх человек и получить многообещающие результаты.
Текст: Екатерина Заикина
Сайт НЕВРОНЬЮС, который Вы собираетесь посетить, содержит материалы исключительно для работников здравоохранения. Нажимая на кнопку «Войти» Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.
«Модная» в современной нейробиологии система редактирования генома позволила обнаружить новый биомаркер болезни Альцгеймера. Открытие и методика опубликованы в Journal of Molecular Medicine.
Система CRISPR/Cas9 – пожалуй, самый популярный в настоящее время инструмент для редактирования геномов. Каждый день выходят десятки статей, посвящённых новым достижениям в генной инженерии, совершённым с использованием этой удивительно простой и дешёвой технологии.
Сама по себе система CRISPR/Cas имеется у бактерий и обеспечивает им приобретённый иммунитет к бактериофагам. Молекулы РНК, считываемые с локуса CRISPR, связываются с геномом вируса, попавшего в клетку, и притаскивают за собой белок Cas9, разрушающий вирусный геном. Оказалось, что, если в любую клетку доставить белок Cas9 (например, засунуть в клетку плазмиду, кодирующую его) и направляющую РНК, комплементарную какому-нибудь гену в клеточном геноме, то Cas9 внесёт в него разрыв и тем самым выключит его.
Конечно, такой удобный инструмент не могли оставить без внимания и нейробиологи. Они выяснили, что в нейронах пациентов с болезнью Альцгеймера практически отсутствует белок STIM1. Этот белок локализуется в эндоплазматическом ретикулуме и регулирует выход из него ионов кальция. Какова же его роль в патогенезе Альцгеймера? Для ответа на этот вопрос учёные с помощью CRISPR/Cas9 отключили ген STIM1 в клетках нейробластомы (естественно, в клетках, живущих в культуре, а не клеток реальной опухоли). И, действительно, эти клетки стали очень похожи на нейроны при болезни Альцгеймера: они демонстрируют признаки старения, их митохондрии имеют деполяризованную внутреннюю мембрану, менее активные дыхательные цепи и пониженную концентрацию кальция. Вероятно, отсутствие экспрессии белка STIM1 может служить верным признаком начинающейся болезни Альцгеймера.
Текст: Елизавета Минина